Toward ultimate miniaturization of high Q silicon traveling-wave microresonators.

نویسندگان

  • Mohammad Soltani
  • Qing Li
  • Siva Yegnanarayanan
  • Ali Adibi
چکیده

High Q traveling-wave resonators (TWR)s are one of the key building block components for VLSI Photonics and photonic integrated circuits (PIC). However, dense VLSI integration requires small footprint resonators. While photonic crystal resonators have shown the record in simultaneous high Q (~10(5)-10(6)) and very small mode volumes; the structural simplicity of TWRs has motivated many ongoing researches on miniaturization of these resonators with maintaining Q in the same range. In this paper, we investigate the scaling issues of silicon traveling-wave microresonators down to ultimate miniaturization levels in SOI platforms. Two main constraints that are considered during this down scaling are: 1) Preservation of the intrinsic Q of the resonator at high values, and 2) Compatibility of resonator with passive (active) integration by preserving the SiO(2) BOX layer (plus a thin Si slab layer for P-N junction fabrication). Microdisk and microdonut (an intermediate design between disk and ring shape) are considered for high Q, miniaturization, and single-mode operation over a wide wavelength range (as high as the free-spectral range). Theoretical and experimental results for miniaturized resonators are demonstrated and Q's as high as ~10(5) for resonators as small as 1.5 μm radius are achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermo-acoustic engineering of silicon microresonators via evanescent waves

Articles you may be interested in Dispersion engineering of high-Q silicon microresonators via thermal oxidation Appl. Investigation on the optimized design of alternate-hole-defect for 2D phononic crystal based silicon microresonators J. External acoustic load on the performance of a travelling-wave thermoacoustic engine AIP Conf.

متن کامل

Triply resonant coherent four-wave mixing in silicon nitride microresonators.

Generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depend on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but...

متن کامل

Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius...

متن کامل

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment.

Using a combination of resist reflow to form a highly circular etch mask pattern and a low-damage plasma dry etch, high-quality-factor silicon optical microdisk resonators are fabricated out of silicon-on-insulator (SOI) wafers. Quality factors as high as Q = 5x10(6) are measured in these microresonators, corresponding to a propagation loss coefficient as small as alpha ~ 0.1 dB/cm. The differe...

متن کامل

Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining

We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 10(5) around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 18 19  شماره 

صفحات  -

تاریخ انتشار 2010